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Econophysics and sociophysics:
their milestones & challenges
Part 2*

Ryszard Kutner**
Faculty of Physics, University ofWarsaw

Abstract.We continue to discuss themilestones of econophysics and sociophysics.We chose them in the context of the
challenges posed by contemporary socio-economic reality.We indicate their role in building research areas in econophysics
and sociophysics. This part is devoted primarily to complexity, incredibly complex networks, and phase transitions,
particularly critical phenomena and processes, agent-basedmodeling, risk issues in the context of financial markets, and
elements ofmodern sociophysics.
Keywords: science of complexity, complex networks, scaling-laws/power-laws and critical phenomena; financial, currency
& cryptocurrency and companymarkets, agent modeling. market and systemic risks

Abstrakt. Kontynuujemy omawianie kamieni milowych ekonofizyki i socjofizyki.Wybraliśmy je w kontekście wyzwań
jakie niesie ze sobą współczesna rzeczywistość społeczno-ekonomiczna.Wskazujemy na ich rolę w budowaniu obszarów
badawczych ekonofizyki i socjofizyki. Ta część poświęcona jest przede wszystkim złożoności, a w tym sieciom złożonym,
przemianom fazowym a szczególnie zjawiskom i procesom krytycznym,modelowaniu agentowemu, zagadnieniom ryzyka
w kontekście rynków finansowych oraz elementom współczesnej socjofizyki.
Słowa kluczowe: nauka o złożoności, sieci złożone, prawa skalowania/prawa potęgowe i zjawiska krytyczne; rynki finansowe,
walutowe oraz rynki firm,modelowanie agentowe. ryzko rynkowe i systemowe

Preamble: The last three years can characterized by the
particularly intensive work of the econophysicists com-
munity on describing and understanding the new reality
inwhich theworld has found itself.What is being sought
is amultidimensional response to the emerging extreme,
multiple unique challenges on an unprecedented scale.
The summary of this intensive work can be, for example,
conferences:
- 11th Polish Symposium in Economy and Social Sciences
(FENS 2021), Kraków 1-3 July 2021
- Conference on Complex Systems 2021 - Satellite on Eco-
nophysics, Lyon 27-28 October 2021
- Econophysics Colloquium, Thessaloniki 24-26 August
2022
In this context, advanced data analysis, particularly re-
search of shocks, crashes, crises, and recessions, and
besides reality modeling, and especially computer si-
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the bibliography has been limited and the numbering of sections has
changed. Moreover, it was stripped of the last paragraph compared
to the original article. Elsevier License Terms and Conditions No.
5380360858688
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mulation of complex systems, recognition and analysis
of various types of risks and threats, and forecasting
of socio-economic reality, have to take into account
extreme (”black swans”) and super-extreme (“dragon
kings”) events. From a factual point of view, this work
concerns the period before 2020. However, the last three
years require in-depth reflection, for which the proper
basis is provided by, among other things, this paper and
the Special Issues [2, 3].

1. The complexity of econophysics and sociophysics

We characterize the relationship between econophy-
sics/sociophysics and areas related to complexity using
the diagram shown in Fig. 3 in Part 1 [4]. These areas also
show the wealth of topics in econophysics and sociophy-
sics. Only some of them are presented in this first part
of the article. This part is mainly devoted to discussing
the complexity of econophysics and sociophysics in the
context of complex networks, agent-basedmodeling as
well as phase transitions and critical phenomena, which
are widely practiced research directions of econophysics
and sociophysics.

2. Complex networks

Important tools to describe and understand the collec-
tive behavior of financial time series (based on correlated
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graphs) include the minimal spanning tree (MST) [5].
This was applied to finance for the first time by Rosario
Mantegna [6], opening a new, extremely prolific chapter
in econophysics and recently to sociophysics.

The MST (is a connected graph) that allows only
such unique paths connecting nodes of a complete graph,
which minimizes the sum of edge distances [7]. In this
way,MST extracts themost important relevant informa-
tions in financial time series [8] and numerous applica-
tions [9] (e.g., in seismic,meteorological, cardiological,
and neurological time series).

The analysis of cluster hierarchy deserves special at-
tention within MST. It well reproduces the sectorial na-
ture of stock exchange. It must be said, however, that
theMST is not robust in a sense that by removing one
data one gets another (topologically non-equivalent) tree.
Only the proper family ofMST trees enables to give a suf-
ficiently robust result [10, 11].

TheMST basedwork [12] details numerical and empi-
rical evidence for dynamical, structural and topological
phase transitions on the Frankfurt Stock Exchange (FSE)
in the temporal vicinity of the worldwide financial crash
2007/8. Indeed, using the MST technique, two typical
transitions of the topology of a complex network repre-
senting the FSE were found. The first transition is from
a hierarchical Abergel scale-freeMST representing the
stockmarket before the recent worldwide financial crash,
to a superstar-likeMST decorated by a scale-free hierar-
chy of trees. The latter one represents themarket’s state
for the period containing the crash. Subsequently, a trans-
ition is observed from this transient, (meta)stable state
of the crash to a hierarchical scale-freeMST decorated
by several star-like trees after the worldwide financial
crash.

Another method, called Planar Maximally Filtered
Graphs (PMFG), is a powerful tool to study complex da-
tasets [13, 14, 15]. It has been shown that bymaking use
of the 3-clique structure of the PMFG a clustering can be
extracted allowing dimensionality reduction. This keeps
both local information and global hierarchy in a determi-
nisticmanner without the use of any prior information
[16]. Filtered graphs can also be used to diversifyfinancial
risk by building a well-diversified portfolio that effecti-
vely reduces investment risk. This is done by investing in
stocks that occupy peripheral, poorly connected regions
in the financial filtered networks [17, 18, 19].

However, the algorithm so far proposed to construct
the PMFG is numerically costly with O(N3

) computa-
tional complexity and cannot be applied to large-scale
data. There is a challenge therefore to search for novel
algorithms that can provide, in a numerically efficient
way, such a reduction to planar filtered graphs.

A new algorithm, called the TMFG (Triangulated
Maximally Filtered Graph), was introduced to efficiently
extracts a planar subgraph, which optimizes an objective
function. Themethod is scalable to very large data sets
and it can take advantage of parallel and GPUs compu-
ting. Themethod is adaptable allowing online updating
and learning with continuous insertion and deletion of
new data as well changes in the strength of the similarity
measure [20].

Network filtering procedures are also allowing to con-
struct probabilistic sparsemodeling for financial systems
that can be used for forecasting, stress testing and risk
allocation [21, 22, 23].

The problem of studying the economic growth pat-
terns across countries is actually a subject of great at-
tention to economists and econophysicists [24, 25]. Clu-
ster analysis methods allow for a comparative study of
countries through basicmacroeconomic indicator fluc-
tuations. Statistical (or correlation) distances between
15 EU countries are first calculated for various moving
time windows. The decrease in time of themean corre-
lation distance is observed as an empirical evidence of
globalization. Besides, themost strongly correlated coun-
tries can be partitioned into stable clusters. TheMoving
AverageMinimal LengthPath algorithm indicates the exi-
stence of cluster-like structures both in the hierarchical
organization of countries and their relativemovements
inside the hierarchy.

All the abovementionedmethods enabled effective
exploration of any complexnetworks, opening new, extre-
mely interesting research fields and triggering a real flood
of not only econophysical and sociophysical works but
also far beyond these research areas (e.g., in biology, eco-
logy, climatology,medicine, telecommunications).

3. Systemic risk and network dynamics
This type of risk has spread widely culminating in the
subprime crisis of 2007/08. The analysis and control of
systemic risk has therefore become an extremely impor-
tant social and economic challenge. This challenge was
taken up by economics, finance, and also by econophy-
sics. It was found that the role of the financial institutions’
network was crucial in the dissemination of the financial
crisis of 2007/08. The greater the degree of cross-linking,
the greater the risk of system crash. This was thoroughly
considered in review entitled: Econophysics of Systemic
Risk andNetworkDynamics edited in 2013 by the Abergel,
Chakrabarti, Chakraborti, and Ghosh [26].

3.1. Financial market risk and the first-passage time
problem

The uncertainty and risk are inextricably linked to the ac-
tivity of financial markets [27, 28]. One has approached
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the very promising issue of risk evaluation and control
as a first-passage time (FPT) problem. The mean first-
passage time (MFPT) was used as a basis for the assump-
tion of stochastic volatility (exploited within the Heston
model) [29]. One significant result is the evidence of
extreme deviations – which implies a high risk of de-
fault – when the strength of the volatility fluctuations
increases. This approach may provide an effective tool
for risk control, which can be readily applicable to real
financial markets both for portfolio management and
trading strategies. Analysis of extreme times considered
in [30] (also as a significant quantity of FPT) is closely
related to at least two challenging problems which are
of great practical interest: the American option pricing
and the issue of default times and credit risk. Both pro-
blems require the knowledge of first-passage times to
certain thresholds. It was found that theMFPT versus
the threshold level can be represented as a power law.
Thus the usefulness of FPT approach to financial times
series analysis has been proven.

3.2. Agent-basedmodelling
Agent-basedmodelling (ABM) opens the possibility for
describing the phenomena and processes occurring on
financial markets (and not only) at ab initio level. In ge-
neral, themarket modelling is one of the challenges of
modern econophysics [31, 32, 33, 34, 35, 36]. Themain
purpose ofmarket modelling is to reveal the laws and un-
derlying processes ofmarket behavior supplying (as one
of the results) some signatures or warnings of upcoming
extreme events or crashes.

Agent-basedmodels, also called computational eco-
nomicmodels, are widely exploited, for instance, in eco-
nomics (Ausloos et al., 2015 [37]; Farmer and Foley, 2009
[38]), sociology (Macy andWiller, 2002 [39]) and in the
environmental sciences (Billari et al., 2006 [40]). A tho-
rough review was made from the econophysics point of
view in 2014 year in the collective review publication enti-
tled: Econophysics of Agent-BasedModels edited by Aber-
gel, Aoyama, Chakrabarti, Chakraborti, and Ghosh [41].

The hallmark of ABMs is the coupling of individual
and collective degrees of freedom of the analyzed sys-
tem that is, its micro- and macroscales. The former is
represented by individual agents, while the latter one by
the system as a whole (or its macroparts). Frequently,
agents are divided into two completely different groups:
stabilizing (e.g., fundamentalists or rebalancers) and de-
stabilizingmarket activity (e.g., chartists, noise traders or
portfolio insurers). The competition between them can
be a source of long-range and long-term nonlinear corre-
lations, critical phenomena and fat-tailed distributions.

Firstly, a few inspiring canonical models belonging
to the field of portfolio analysis are presented. The pione-

ering Kim-Markowitz (KM) agent-basedmodel [42, 43]
was inspired by the stock market crash of 19th October
1987, when DJIA decreased bymore than 20% per day.
This model confirmed by numerical simulation a com-
mon observation that strategies of portfolio insurers (and
not that of rebalancers) destabilize financial markets.
This model has raised hopes for the promising agent-
basedmodelling capabilities.

Besides, the Levy-Levy-Solomon (LLS) model [44]
was developed to consider the risk-averse investors ha-
ving arbitrary long memory. The LLS model describes
the spontaneous periodicity of themarket, its booms and
crashes. Although the results obtained depend signifi-
cantly on the initial conditions assumed, themodel has
demonstrated (by numerical simulation) that the wealth
available on themarket (in the formof shares and bonds)
will, after sufficiently long time, be taken over by a group
of investors equipped with a long memory (one hundred
steps back in simulation). This outcome is in line with
expectations.

An extremely popular model describing the evolu-
tion of the market, going beyond the aforementioned
portfolio analysis category is the Lux-Marchesi (LM)mo-
del [45]. It is able to correctly describemany stylized facts,
for example: volatility clustering, power-law distribution
of returns, and long-term autocorrelation of absolute
returns. This model is based on the concept ofmutual
exchange and interaction between different groups of
investors (i.e. chartists and fundamentalists) and on the
process of price adjustments with a demand-supply im-
balance.Additionally, chartists are divided into optimists
and pessimists - the competition between them as well as
with fundamentalists create an effective opinion of agents
leading to strong interconnection of chartists amount
with the price amplitude. This interconnection is respon-
sible for the observed largemarket fluctuations. A simi-
lar influence of portfolio insurers is observed within the
Kim-Markowitz model. The technical disadvantage of
the LMmodel is the large number of free parameters in
themodel involved.

A very important category ofmodels describing the
behavior of financial markets, and inspired by models
drawn from physics, are primarily Ising-like on complex
networks, whose prominent example is the Iori numeric
model [46]. The agent is represented here by three-state
spin vector, where state +1 means buying a stock, −1 sel-
ling, while 0means inactive state. Obviously, the agent
activity is limited by amount of his capital however, his
activity has still a probabilistic character with threshold.
Besides, themarket maker is present guarding the liqu-
idity of themarket. The price in this model depends not
only on the ratio of the supply of securities to their de-
mand but also on the available securities volume. This
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multiparameter model managed to describe all the styli-
zed facts (i.e. volatility clustering of returns, the positive
correlation between volatility and trading volume, the
power-law decay of autocorrelation).

The above models inspired the econophysicists in
a significant way. The first model that grew out of this
society and was characterized by a small number of para-
meters was the Cont-Bouchaud (CB) model [47] based
on a discrete percolation phenomenon – a phenomenon
previously analyzed in the field of chemistry and statisti-
cal physics, condensedmatter physics andmathematics.
A year later, Dietrich Stauffer also used percolations to
model the behavior of financial markets [48].

As a part of the CBmodel, neighboring network no-
des form a cluster making collectively investment de-
cisions in a probabilistic manner. Therefore, it can be
said that this model is based on the so-called lattice-gas
model isomorphic with canonic Ising model. Themar-
ket price is (as usual) a function (here exponential) of
the difference between demand and supply. This type of
approach is very flexible, generating (depending on the
input probability) either Gaussian distributions or va-
rious types of power-laws distributions – both observed
on financial markets.

The next interesting ABM is the Bornholdt spin mo-
del [49, 50] primarily designed to recreate the price dyna-
mics in short time horizons. Similarly to theKM and LM
models, it assumes that there are two types of investors
on themarket: fundamentalists and noisy traders. The
fundamentalists only respond to price changes,making
themarket price as close as possible to the fundamental
value of stock. The mutually interacting noisy traders
take the probabilistic decisions to buy or sell the stocks
depending on themarket situation. This situation is de-
scribed by the local, time-dependent threshold function
of influence having a threshold character. The size of this
threshold is connected linearly with the volume. In this
model, the interacting traders are responsible for non-
Gaussian behavior of themarket. The Bornholdt model
describes a lot of stylized facts: power-law return distribu-
tions, volatility clustering, positive correlation between
volatility and volume, and self-similarity between vola-
tilities on various time scales. Unfortunately, the shape
of the absolute-returns autocorrelation function is not
a power law herein.

Although the ABMs circumscribed above are valu-
able and useful, none of them were used to model the
interevent-time statistics so much significant in a study
of correlations on financial markets. In 2014 themodel
of so-called cunning agents was developed [51], which
reproduces not only stylized facts but also empirical stati-
stics of interevent times. One can say that we are dealing
with a cunning agent if he accepts a position, for example,

a long one indicating the willingness to buy additional
items and informs his neighbors about it, but in fact,
simultaneously sells the possessed assets. The situation
is similar in the short and neutral position. Recently,
a model appeared [52], which starting from the level
of stochastic dynamic equations, was able to reproduce
mentioned above the empirical statistics of interevent
times.

The interesting extension of the Geometrical Brow-
nian Motion was made by Dhesi and Ausloos [53] who
introduced so-called the Irrational Fractional Brownian
Motion model. They re-examined agent behaviour reac-
ting to time dependent news on the log-returns thereby
modifying a financial market evolution. Authors speci-
fically discuss the role of financial news or economic
information as a positive or negative feedback of such ir-
rational (or contrarian) agents upon the price evolution.
A kink-like effect reminiscent of soliton behaviour was
observed, suggesting how forecasts uncertainty induces
stock prices. This way they proposed ameasure of irratio-
nal force in amarket,which seems to be a very significant
for understanding the dynamics of stock market.

It should be emphasized that agent-based models,
along with network models, have gained immense popu-
larity not only in the society of econophysicists but also
sociophysicists.

4. Phase transitions, catastrophic and critical
phenomena

Phase transitions, catastrophic and critical phenomena
have long been studied both in the framework of econo-
and sociophysics (see, for instance, [54, 55]). However,
phase transition of the global financial system observed
at the end of 2008 deserves the special attention. This
is because it was just after the bankruptcy of Lehman
Brother [56]. The signature of this transition is a sharp
increase in the susceptibility/sensitivity of the system to
the negative global shock with an initially well-defined
epicenter focused on mortgage backed securities. This
shock was the source of the observed cascade of defaults
or a succession of problems associatedwith themost pro-
minent global institutions (belonging to the banking, in-
surance andmortgage sectors).This cascade caused crash
on the stock market and the subsequent panic among
economical institutions from the global (‘too-big-too-
fall’) to the local ones – leading many of the latter to
bankruptcy.

The model developed in paper [56] is, in essence,
a simplified discrete correlated random walk of walkers
(or firms) on the ladder consisting of the effective credit
rating grades (ECRGs), where the firm either remains at
a given ECRG or change its value by one (with blocking
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boundary condition at top and the bottom of the ladder).
By using the statistical-mechanic partition function ba-
sed on the Ising-like sociological influence function, the
conditional single-step probability for each firm is con-
structing in the exponential form.This partition function
contains the field of panic taking into account the firm’s
bankruptcy. For simplicity, the direct coupling between
firms is a random variable drawn from the Gaussian di-
stribution.Thismodel exhibits a critical behaviour that is,
the second-order phase transition at well-defined critical
point. Besides, the phenomenon of spontaneous symme-
try breaking is observed (by the increasing the number
of bankruptcies) due to the nonvanishing of the panic
field. Themodel offers the phase diagrams and enables
the system time evolution. This is the first so complete
model in the field although earlier more sociophysical
orientedmodels by Schweitzer et al. were published [57].

One should alsomentionworks that still raise contro-
versy regarding the presence of bifurcation on the stock
exchange or,more generally, phase transformations of
the first order. The related issue of the critical and cata-
strophic slowing down phenomenon are themost refined
indicators of whether a system is approaching a critical
point or a tipping point – the latter being a synonym
for the catastrophic threshold located at a catastrophic
bifurcation transition. The still open problem raised by
Scheffer et al. [58] is whether early-warning signals in
the form of a critical or catastrophic slowing down phe-
nomena (such as those observed in multiple physical
systems) are present on financial market. The possibility
of existence of the above-mentioned early-warning si-
gnals was highlighted in publication of Kozłowska et al.
[59] and refs. therein.

A microscopic approach to macroeconomic featu-
res has always been a challenge [60] and refs therein.
A birth-death lattice gas model for macroeconomic be-
havior under heterogeneous spatial economic conditions
takes into account the influence of an economic environ-
ment on the fitness and concentration evolution of the
economic entities. The reaction-diffusion model can be
also mapped onto a high order logistic map. The role
of the selection pressure along various dynamics (with
entity diffusion on a square symmetry lattice) has been
studied byMonte-Carlo simulation. Themodel leads to
a sort of phase transition for the fitness gap as a function
of the selection pressure and to cycles. The scalar con-
trol parameter is a sort of a “business plan”. The business
plan(s) allows for spin-offs or merging and enterprise
survival evolution law(s), once bifurcations, cycles and
chaotic behavior are taken into account.

The problem whether a power-law or an exponen-
tial law describes better the distribution of occurrences
of economic recession periods is significant not only

for econo- and sociophysics but primarily for socio-
economical science and life. In order to clarify the con-
troversy a different set of GDP data were examined in
[61] for example. The conclusion about a power law di-
stribution of recession periods seems to bemore reliable
though thematter is not entirely settled. The case of pro-
sperity duration is also studied and it is found to follow
also a power law. Considering that the economy is basi-
cally a bistable system (recession/prosperity) a characte-
ristic (de)stabilisation time is posssible to quantitatively
derive.

5. Significant elements of global economy

The global economy has its source in important con-
nections (dependences, interactions, influences, etc) be-
tween countries and regions [62]. An international trade
is a glaring example of this. Obviously, the globalization
is one of the central processes of our age. The common
perception of such process is that, due to declining com-
munication and transport costs, distance becomes less
and less important. However, the distance coefficient
in the economical gravity model of trade [63] (which
grows in time) indicates paradoxically that the role of
distance becomes amore important. In the paper [62] it
was shown that the fractality of the international trade
system (ITS) provides a simple solution for this globali-
zation puzzle. It was argued that the distance coefficient
corresponds to the fractal dimension of ITS and not to
the Cartesian distance.

The world economic conditions evolve and are quite
varied on different time and space scales. This evolu-
tion forces developing ofmacroeconomic entities within
a geographical type of framework [64, 65]. For the firm
fitness evolution a constraint is taken into account such
that the disappearance of a firmmodifies the fitness of
nearest neighboring ones (as in Bak-Sneppen popula-
tion fitness evolution model [66]). The concentration of
firms, the averaged fitness, the regional distribution of
firms, and fitness for different timemoments, the num-
ber of collapsed,merged and new firms as a function of
time have been recorded and are discussed. A power
law dependence, signature of self-critical organization,
is seen in the firms’ birth and collapse asymptotic values
for a high selection pressure (control parameter) only.
A lack of self-organization is also seen at region borders.
The research andmarket modeling of companies is still
one of themain goals of econophysics.

6. Contemporary sociophysics

The systematic research on society that gives rise to the
modern sociology is mainly due to the work of Quetelet
[67] (see also [68]). Today it is clear that only a compre-
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hensive approach to economic phenomena and proces-
ses, including both psychology, social psychology and
sociology, enables the description and understanding
of themechanisms governing socio-economic life (inc-
luding also financial markets). This was shown convin-
cingly in 2006 in the collective work [69].We are incre-
asingly attempting to understand the emotional nature
of human activity and activity of human communities.
This emotional component can be seen particularly cle-
arly in cyberspace – this has been well presented in the
collective work entitled: Cyberemotions. Collective Emo-
tions in Cyberspace, edited by Janusz A. Hołyst [70]. This
type of interdisciplinary approach to the complex socio-
economic reality is extremely inspiring, stimulating and
promising. In this context, we should say about the role
of the Sznajd model (‘united we stand, divided we fall’
– USDFmodel) [71, 72]. It has become credible thanks
to its success in predicting the result of elections in Bra-
zil, opening the way for contemporary sociophysics. The
Sznajd model easily introduces the possibility of obta-
ining a consensus by exchanging opinions betweenmem-
bers of a given community. It is based on the Ising model
with characteristic social interaction – it is by far the
most exploited by sociophysicists toy model with the
cluster-like ever-growing number of different variants.
A complementary, important model that should also be
mentioned here is the Bonabeau model [73] showing
how hierarchies are created in a given community. Let
us add that currently the study of various hierarchical
structures, cascades, and networks is fashionable and
very advanced [74, 75].

The social impact is one of themost important and
the most common social phenomena. The dynamical
theory of this impact proposed in 1990 [76] gave rise to
a huge stream of works. The sociophysicists havemade
a significant contribution to the development of this
trend. Today, this type ofmodeling is a canonical com-
ponent of the sociophysics without which one cannot
imagine an advanced analysis of the societies’ behavior.

The attempts made by physicists to understand so-
called social “forces” have lasted at least since themid-
1970s [77]. Quite interestingly, the source of social force
is attributed to technological innovation made by com-
peting goods and new population. Another view about
quantifying social forces (found in [78]) pretends that
they result as coupling to some external fields.

The role of emotions in opinion dynamicsmentioned
above was used in a variant of the ABM complementary
to the Sznajd model. The combination of information
and emotions interplay was used successfully to predict
the results of Polish election in 2015 [79, 80]. This is the
prominent evidence of the practical use of sociophysical
modeling.

Let us add that the collective work entitled:Why So-
ciety is a Complex Matter edited by Philip Ball in 2012
[81] also played a prominent role in the development of
contemporary sociophysics. This collective work poin-
ted to sociophysics as a new kind of science. There the
Helbing’s work [82] (see also [83]) has shown a crucial
role of information and communication technology for
society.

It should be noted that in the last decade issues re-
lated to the evolution of cultures (including linguistics)
have been continuing to represent an attractive, intrigu-
ing course of research [84, 85, 86, 87, 88]. A key tool for
modeling this evolution is the Axelrod model and its
various variants [84].

The Axelrodmodel [89] is defined by stochastic pro-
cess which, similarly to the voter model, contains a social
interaction between nodes of a network, but unlike the
voter model also accounts for homophily. The aim of the
model is to describe and explain macroscopic observa-
tions in real-world social networks, based on simplemi-
croscopic rules.Thesemicroscopic rules are also inspired
by empirical observations or concluded from sociology
or psychology. Every node of the network is described, in
the frame of themodel, by a vector of traits representing
internal degrees of freedom. The idea behind the mo-
del was simple – to explain cultural diversity observed
in societies, despite the fact that people become more
alikewithin a face to face interaction. Therefore, Axelrod
asked why eventually all differences do not disappear? In
his model the vector of traits describes culture of an in-
dividual (regional society or nation) in a sense of habits,
beliefs, religion, language, hobbies, views, etc. During
the evolution two individuals become more similar to
each other, unless they stay different. This is a crucial
observation leading to an interesting result, because only
that one can obtain frozen (or equilibrium) states. De-
pending on the initial conditions, simulations can end
in one of the states: in a homogeneous state with amono-
culture or heterogeneous with many small subcultures,
called ’domains’. The coexistence of thesemany different
subcultures is amain result, confirming the possibility
of existence of heterogeneous societies, despite people
becomemore andmore similar.

The model gained interest among physicists a few
years later [90] along with the discovery of the phase
transitions between homogeneous and heterogeneous
states (continuous or discontinuous types). To make the
model more realistic, it was extended to complex ne-
tworks with very different topologies [91] as well as to dy-
namic complex networks. Moreover, this latter issue was
addressed in [92], where different rewiring mechanisms
were analyzed. It was then possible to obtain real-world
features, like power-law degree distribution or high va-
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lues of clustering coefficient. Besides, it was shown that
a key to the proper scaling of the number of languages
is triadic closure – type of rewiring proved to be very
important in social networks [93].

A “degree of freedom” in a population is also the reli-
gion adhesion. The pioneering work on such adhesion
aspect, in fact similar to market/company growth and
market share influence, was published almost a decade
ago [94]. The observed features and some intuitive in-
terpretations point to opinion basedmodels with vector
like agent rather than scalar ones (many degrees of fre-
edom instead of one). This supports the assumption of
the Axelrod approach.

It is worth to mention also the works from the bor-
derline of econo- and sociophysics regarding household
incomes (especially in the European Union and the Uni-
ted States). The approach based on the stationary solu-
tion of the reinterpreted Fokker-Planck equation turned
out to be particularly useful [95, 96]. This approach al-
lowed to describe the distribution of income of all three
social classes: low income, medium and high income
well reproducing the Pareto laws (with different Pareto
exponents) for the last two classes.

Concerning the wealth distribution, one of themost
interesting outputs is the generic existence of a phase
transition, separating a phase where the total wealth of
a very large population is concentrated in the hands of
a finite number of individuals (condensation phenome-
non) from a phase where it is shared by a finite fraction
of the population [97]. The rich phase diagram was exa-
mined in [98], in which both open and closed Pareto
macroeconomics were studied. Thewealth condensation
takes place in the social phases both for closed (with
the fixed total wealth) and open (with the fixed mean
wealth) macroeconomy. The wealth condensation takes
place also in the liberal phase for super-open macroeco-
nomy (itwas proved, indeed, in [97]). Itwas found that in
the first two cases ofmacroeconomy, the condensation
is related to the mechanism known from the balls-in-
boxes model, while in the last case, to the fat tails of the
Pareto distribution. Besides, for a closedmacroeconomy
in the social phase, the emergence of a “corruption” phe-
nomenon was pointed out. A sizeable fraction of the
total wealth is always amassed by a single individual. In
publications cited above the dependence of Pareto expo-
nents onmicroscopic parameters of themodelwas found.
This is an achievement useful both for theoreticians and
practitioners in social sciences.

Recently, several studies were published [99] (and
refs. therein) which have given better insight into how
birth is affected by exogenous factors. Especially, the ad-
verse conditions (e.g. famines, epidemics, earthquakes,
droughts, floods, etc.) temporarily affect the conception

capacity of populations, thus producing birth rate tro-
ughs ninemonths after mortality waves. The challenge
here is the discovery of the birth rate patterns and their
interpretation. A promising step in this direction was
made in paper [99], where several important patterns
were found and discussed.

7. Challenges and warnings

It is already known that the analysis should take into acco-
unt the feedback between econonophysics and sociophy-
sics (including socio-psychology and even psychology of
leaders and the policy of the state). Even roughly approxi-
matedmodelling of reality should take into account the
rivalry of the rational multicomponent with irrational
one. The interdependence and networking of elements
of socio-economical complex systems constitute (within
econo- and sociophysics) the basis for the research even
if the available empirical data is dirty and uncertain. The
researchers realize that they are affecting the problems
generated by complex systems. This complexity is the
source of emergent phenomena and processes, including
catastrophic and critical ones (on a macroscale). This
may result in a dichotomy of descriptions within the
micro- andmacroscales. It is understand that, for exam-
ple, breaking the principle of ergodicitymay lead to the
impassable barrier creating a dichotomy in the statistical
description of socio-economical reality. That is, pheno-
mena and processes in the macro scale mainly result
from the properties of the system as a whole (especially
when the system stays in a critical state) and not only
from the behavior and properties of individual objects
forming the system in the microscale. The understan-
ding the role of dependency or correlation, causality, and
coevolution or adaptation in markets or the complexity
ofmarkets and emerging phenomena and processes, be-
come one of the greatest challenges for modern research
of a socio-economical reality [100, 101, 102]. However, the
econophysicists discoveries has miserable impact on the
main stream works of financial economy (see Jovanovic
and Schinckus [103]).

Finally, wemust say about an event that puts a sha-
dow on mathematics and financial physics as a great
warning and a lesson for all of us. The portfolio analy-
sis in the nineties of the previous century was based, in
fact, on the canonical option pricing formula of Black-
Scholes-Merton (BSM) derived in the canonical paper
[104]. The BSM formula was derivedmainly assuming
that the prices of basic financial instruments, on which
options were issued, are subject to the geometrical Brow-
nian motion, while considered options are risk-neutral.
As for the trend, its constant growth would be driven
by investors constantly seeking arbitrage opportunities.
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Based on this theoretical approach, the hedge fund Long-
Term Capital Management (LTCM) was created in year
1994; the key people behind LTCM wereMyron S. Scho-
les and Robert C. Merton – the Nobel Prize winners.

Although initially successful (for three consecutive
years) with annualized return of over 20% netto, from
August to September 1998 (short after the Asian financial
crisis in 1997 and 1998 Russian financial crisis) LTCM
lost, however, about 4.5miliard (US billion) dollars seve-
rely disrupting global markets for several months. This
was the consequence of violating the key assumptions of
the theory in newmarket circumstances and neglecting
the constant verification of these assumptions. Besides,
used by LTCM leverage of portfolio composition has
reached an unbearable ratio of debt-to-equity as 25:1. An
in-depth systematic econophysical analysis of this sub-
ject, and especially issues related to market risks, was
provided in year 2001 by Jean-Philippe Bouchaud and
Marc Potters in the book Theory of Financial Risks. From
Statistical Physics to Risk Management [105].

As a warning, we should also mention that the giant
financial pyramid was discovered in 2008 by financial su-
pervision. It was created by BernardMadoff (co-founder
and former chairman of the NASDAQ stock exchange
operating today) as part of his eliteMadoff Investment
Securities hedge fund. The fraudulent fund led approxi-
mately 13,500 shareholders (including reputable banks
and financial institutions) to roughly 35 billion USD in
losses. As a result, Madoff spent the rest of his life in
prison.

Itmust be clearly stated thatwe live in an increasingly
risky society which is particularly vulnerable to extreme
types of risk – both market and systemic [106]. Concer-
ning the financial sector, among all possible extreme
phenomena, indeed crashes are presumably the most
striking events with an impact and frequency that has
been increasing in the last two decades increasing the
risk ofmarket activity extremely. Understanding what is
happening as well as risk control andmanagement is an
urgent challenge for investors and researchers alike.
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